Archived Policies - Surgery


Vertical Expandable Prosthetic Titanium Rib (VEPTR) for Thoracic Insufficiency Syndrome (TIS)

Number:SUR705.025

Effective Date:04-15-2017

End Date:08-14-2018

Coverage:

Implantation of the Vertical Expandable Prosthetic Titanium Rib (VEPTR) device may be considered medically necessary when provided according to the U.S. Food and Drug Administration’s (FDA) humanitarian device exemption labeled indications, for treatment of thoracic insufficiency syndrome (TIS) in skeletally immature patients.

Use of the vertical expandable prosthetic titanium rib may be considered medically necessary in the treatment of progressive thoracic insufficiency syndrome due to rib and/or chest wall defects in infants/children between 6 months of age and skeletal maturity.

The VEPTR device should not be used in patients with the following conditions:

Inadequate bone strength in the ribs or spine where the VEPTR device attaches,

Absence of proximal ribs for attachment of the VEPTR device,

Absent diaphragmatic function,

Inadequate soft tissue for coverage of the VEPTR device,

Age below 6 months,

Age beyond skeletal maturity (about age 14 for girls and age 16 for boys),

Known allergy to any of the device materials, OR

Infection at the operative site.

Implantation of the VEPTR device for indications other than TIS is considered experimental, investigational and/or unproven.

NOTE: Given the complexity of these procedures and patients, implantation of this device should be performed only in specialized centers. Preoperative evaluation requires input from pediatric orthopedist, pulmonologist, and thoracic surgeon. In addition, preoperative evaluation of nutritional, cardiac, and pulmonary function (when possible) is required.

Description:

Thoracic insufficiency syndrome (TIS) is the inability of the thorax to support normal respiration or lung growth. (1) This condition results from serious defects affecting the ribs or chest wall (i.e., severe scoliosis, with rib absence or rib fusion [which may accompany scoliosis]), and various hypoplastic thorax syndromes (i.e., Jeune’s Syndrome and Jarcho-Levin syndrome). Spine, chest, and lung growth are interdependent. (2) While the coexistence of chest wall and spinal deformity is well documented, their effect on lung growth is not completely understood.

Progressive TIS includes respiratory insufficiency, loss of chest wall mobility, worsening three-dimensional thoracic deformity, and/or worsening pulmonary function tests. As a child grows, progressive thoracic deformity and rotation toward the concave side occurs with worsening respiratory compromise. This progression is often accompanied by a need for supplemental oxygen and can require mechanical ventilation. While spinal fusion is one approach to treatment, it may not be successful and also may limit growth (lengthening) of the spine.

The VEPTR device (Synthes Spine) is a curved rod placed vertically in the chest that helps to shape the thoracic cavity. VEPTR may be described as “rib based” growth-sparing instrumentation, which is compared with “spine based” growing rods for Cobb angle correction. It is positioned either between ribs, or between the ribs and either the spine or the pelvis. The device is designed to be expanded every four to six months as growth occurs and also to be replaced if necessary. Some patients require multiple devices.

This review also indicated that the device should not be used in patients younger than six months.

A VEPTR initially received approval from the U.S. Food and Drug Administration (FDA) under a humanitarian device exemption (HDE) for the treatment of TIS in skeletally immature patients. (3) TIS is defined as the inability of the thorax to support normal respiration or lung growth. In 2014, FDA cleared the VEPTR through the 510(k) process. The VEPTR/VEPTR II device is indicated for skeletally immature patients with severe progressive spinal deformities and/or 3-dimensional deformity of the thorax associated with or at risk of TIS. This would include patients with progressive congenital, neuromuscular, idiopathic, or syndromic scoliosis.

For the purpose of identifying potential TIS patients, categories in which TIS patients fall are as follows:

Flail chest syndrome

Rib fusion and scoliosis

Hypoplastic thorax syndrome, including,

o Jeune syndrome;

o Achondroplasia;

o Jarcho-Levin syndrome;

o Ellis-van Creveld syndrome.

FDA product code: MDI.

Rationale:

This policy was originally developed in 2005 and has been updated with searches of scientific literature through July 2016. The following is a summary of the key literature to date.

Thoracic insufficiency occurs in a limited patient population, and the literature on use of the vertical expandable prosthetic titanium rib (VEPTR) consists, in general, of case series from single institutions. Some series are from specialized pediatric centers. No comparative trials have been identified.

Thoracic Insufficiency Syndrome

Data submitted to the U.S. Food and Drug Administration (FDA) includes an initial feasibility study involving 33 patients and a subsequent prospective study of 224 patients (214 with baseline data) at 7 study sites. (3) Of these patients, 94 had rib fusion, 93 had hypoplastic thoracic syndrome, 46 had progressive scoliosis, and 14 had flail chest as a cause of their thoracic insufficiency syndrome (TIS). Three- and 5-year follow-up rates for the multicenter study were approximately 95%. Of the 247 patients enrolled in either study, 12 patients died (4.8%) and 2 withdrew. None of the deaths was determined by investigators to be device-related. Since standard pulmonary function testing was not possible for most of this population, an assisted ventilatory rating (AVR) was used to assess impact on respiratory status. The AVR ranged from 0 for unassisted breathing on room air to 4 for full-time ventilatory support. In the multicenter prospective study, the AVR outcome improved or stabilized for 93% of the patients. Data were not reported for the number of patients who were no longer ventilator-dependent.

Campbell, the developer of the device, and colleagues reported on 27 patients who had surgery for TIS and for whom at least 2 years of follow-up data were available; this series was based on 41 patients treated between 1990 and the acceptance of the paper. (4) Entry criteria for this study were acceptance by pediatric general surgeon, pediatric pulmonologist, and pediatric orthopedist; age 6 months to skeletal maturity; progressive TIS; more than 10% reduction in height of the concave hemithorax; and 3 or more anomalous vertebrae, with 3 or more fused ribs at the apex of the deformity. Patients were followed up for an average of 3.2 (range: 2–12) years. Prior to surgery, the mean annual rate of progression was 15 degrees per year (range: 2–50 years). Following surgery the Cobb angle (of scoliosis) improved from 74 degrees to a final value of 49 degrees. Spine growth was at the rate of 0.8 cm per year. (Normal spinal growth is 0.6 cm/year for ages 5–10 years.) The final forced vital capacity (FVC) was 49% of predicted value in the 19 children who could complete pulmonary function tests (PFTs). Preoperatively, 1 patient required continuous positive airway pressure (CPAP), and 1 needed supplemental oxygen for ventilatory support at final follow-up. Another publication from this group reported average 40.7-month follow-up (range, 25-78 months) in 24 children with nonsyndromic congenital scoliosis. (5) Twenty-three (95.8%) children had associated rib fusions, and the average age at surgery was 3.3 years (range, 0.7-12.5 years). With a mean of 5 expansion surgeries per patient (range, 1-10), the Cobb angle had improved by a mean of 8.9 degrees and thoracic height improved by a mean of 3.41 cm. Eight of the patients (33%) had a total of 16 adverse events, all of which required surgical intervention.

In another series, Gadepalli et al. examined growth and pulmonary function in 26 children who received a VEPTR between October 2006 and March 2010. (6) The children underwent 29 insertions and 57 expansions, with an average of 3 surgeries per child. Each procedure required an average 0.97 days in the intensive care unit and 4.41 days in the hospital. The mean Cobb angle improved by 29%, from 64.7 degrees preoperatively to 46.1 degrees postoperatively. Lung volumes measured by yearly thoracic computed tomography (CT) scans were similar when corrected for age. Pulmonary function tests were performed every 6 months in patients (n=12) who were not ventilator-dependent and could cooperate with the procedure. Pulmonary function tests showed no significant change from baseline to follow-up in percent predicted values for forced expiratory volume in 1 second (FEV1) (54.6 vs. 51.8), FVC (58.1 vs. 55.9), or residual volume (145.3 vs. 105.6 – all respectively). Reoperation was required for 14 complications, 4 for chest tube placement (pneumothorax), 1 for seroma drainage, 6 for hardware removal (for infection), and 3 for hardware repositioning (for dislodgement). Another 22 complications were treated nonoperatively.

Emans and colleagues reported results on patients with TIS who underwent the procedure at Children’s Hospital in Boston from 1999 to 2005. (7) Thirty-one patients with fused ribs and TIS were treated; 4 patients had prior spinal arthrodesis with continued progression of deformity. Before surgery, all patients showed progressive spinal deformity, progressive chest deformity, or progressive hemithoracic constriction. The mean age was 4.2 years, and mean follow-up was 2.6 years (range: 0.5 to 5.4 years). A 3-member team selected patients for surgery; cardiac function was also evaluated preoperatively. Surgery was performed using the Campbell technique for vertical expandable prosthetic titanium rib (VEPTR). Device lengthening was planned for every 4 to 6 months but often was longer due to intercurrent illness or difficulty with travel. The mean number of device lengthenings was 3.5 (range: 0–10). Six patients had device exchanges for growth. In 30 patients, the spinal deformity was controlled, and growth continued (1.2 cm/yr) in the thoracic spine during treatment at rates similar to normal children. In this study, the final FVC was 73.5% of predicted levels. Preprocedure, 2 patients were on ventilators and 3 patients required oxygen; at final follow-up, 1 patient required oxygen. Lung volume (measured by CT scan in cubic-cm) in the operated lung increased from 157 preoperatively to 326 at the final follow-up visit.

Motoyama and colleagues from Children’s Hospital in Pittsburgh reported on follow-up of 10 patients with thoracic insufficiency with follow-up as long as 33 months. (8) Using a special portable pulmonary function testing device, they reported on lung function in 10 children who had placement of VEPTR. In this population, the median age was 4.3 years (range: 1.8–9.8 years) at first test, and they followed patients an average of 22 months (range: 7–33 months). At baseline, FVC showed a moderate-to-severe decrease (69% of predicted), indicating the presence of significant restrictive lung defect. FVC increased significantly over time, with an average rate of 26.8% per year, similar to that of healthy children of comparative ages. In terms of percent-predicted values, FVC did not change significantly between the baseline and last test (70.3%), indicating that in most children studied, lung growth kept up with body growth. A series of 22 patients from another Children’s Hospital was published in 2007. (9) There are a number of additional series; some discuss weight gain following use of vertical expandable prosthetic titanium rib in thoracic insufficiency syndrome (10) while others discuss early changes in pulmonary function. (11)

Scoliosis without Thoracic Insufficiency Syndrome

White et al. reported the off-label use of spine-to-spine VEPTR to treat spinal deformity in 14 children without chest wall abnormalities. (12) The indications for the dual spine-to-spine rods were absence of a primary chest wall deformity, progression of spinal deformity to a Cobb angle of greater than 50 degrees, and migration of a previously placed proximal rib anchor or of a prior non-VEPTR growing rod to the point of loss of stable fixation. At final follow-up (24-48 months), there was an improvement in the Cobb angle from 74 to 57 degrees, an increase in T1-S1 height from 260 to 296 mm, and no significant change in kyphosis. Complications occurred in 6 of 14 patients (43%) and included 3 rod fractures in 2 patients, 3 superficial infections, and 1 case of prominent hardware that threatened skin integrity. As noted by the authors, while results are similar to those obtained with other growing rods, “the high complication rates, need for multiple procedures in growing children, and small relative gains in radiographic parameters still challenge proof of efficacy of all such treatment methods.”

In 2014, treatment of congenital scoliosis with VEPTR (n=22) was compared with treatment with spinal fusion (n=27) or observation (n=184) based on a prospective registry. (13) Function, pain, and mental health status were measured with the 22-item Scoliosis Research Society questionnaire. Compared with the observation group, the VEPTR group had higher total and image scores in the second and third visits and higher function scores between the third and fourth visits. Interpretation of this study is limited due to a number of confounding factors, including age at treatment, unknown comorbidities, and the rationale for the selection of treatment.

Adverse Events

The complications that occur with this device need to be considered by practitioners and families as they are discussing this procedure. Information on complications is summarized using data from the FDA review and the papers by Campbell and Emans. (3, 4, 6) Up to 25% of patients may experience device migration, including rib erosion. However, there does not seem to be significant long-term consequences from this. Approximately 10% of patients had infection-related complications. Brachial plexus injury or thoracic outlet syndrome occurred in 1% to 7% of these series. Skin sloughing was reported in 4 patients (15%) in the study published by Campbell.

Table 1. Summary of Key Trials

NCT No.

Trial Name

Planned Enrollment

Completion Date

Ongoing

 

 

 

NCT00689533a

VEPTR Implantation to Treat Children With Early Onset Scoliosis Without Rib Abnormalities: A Prospective Multicenter Study

250

Jan 2016

NCT: national clinical trial.

Practice Guidelines and Position Statements

No guidelines or statements were identified.

Summary

Thoracic insufficiency occurs in a limited patient population; for example, the Boston center reported results on 31 children treated from 1999 to 2005. The natural history of progressive TIS is worsening pulmonary function and worsening pulmonary insufficiency.

Results from the series reported at different specialty centers demonstrate improvement and/or stabilization in key measures with use of this device in progressive TIS. This improvement is noted in measures related to thoracic structure (e.g., Cobb angle for those with scoliosis), growth of the thoracic spine and lung volumes, and stable or improved ventilatory status. While pulmonary function testing is very difficult in these patients, one study does demonstrate an age-specific increase in forced vital capacity (FVC), and the studies report a final FVC in the range of 50–70% of predicted value.

Given the usual disease course of worsening thoracic volume and ventilatory status, the stabilization/improvement in these measures would be highly unlikely in the absence of the intervention. Taken together, these various outcome measures demonstrate the positive impact of this procedure.

Thus, this intervention may be considered medically necessary in children with progressive TIS due to rib and/or chest wall defects. Given the complexity of this procedure and the patient population, use of this device should be performed in specialized centers. Preoperative evaluation requires input from a pediatric orthopedist, pulmonologist, and thoracic surgeon. In addition, preoperative evaluation of nutritional, cardiac, and pulmonary function (when possible) is required.

The VEPTR is also being evaluated for curves greater than 45 degrees in infants and juveniles without thoracic insufficiency. Limited data are available on the use of the VEPTR for early onset scoliosis without thoracic insufficiency; therefore, this is considered experimental, investigational and/or unproven.

Contract:

Each benefit plan, summary plan description or contract defines which services are covered, which services are excluded, and which services are subject to dollar caps or other limitations, conditions or exclusions. Members and their providers have the responsibility for consulting the member's benefit plan, summary plan description or contract to determine if there are any exclusions or other benefit limitations applicable to this service or supply. If there is a discrepancy between a Medical Policy and a member's benefit plan, summary plan description or contract, the benefit plan, summary plan description or contract will govern.

Coding:

CODING:

Disclaimer for coding information on Medical Policies

Procedure and diagnosis codes on Medical Policy documents are included only as a general reference tool for each policy. They may not be all-inclusive.

The presence or absence of procedure, service, supply, device or diagnosis codes in a Medical Policy document has no relevance for determination of benefit coverage for members or reimbursement for providers. Only the written coverage position in a medical policy should be used for such determinations.

Benefit coverage determinations based on written Medical Policy coverage positions must include review of the member’s benefit contract or Summary Plan Description (SPD) for defined coverage vs. non-coverage, benefit exclusions, and benefit limitations such as dollar or duration caps.

CPT/HCPCS/ICD-9/ICD-10 Codes

The following codes may be applicable to this Medical policy and may not be all inclusive.

CPT Codes

22899

HCPCS Codes

None

ICD-9 Diagnosis Codes

Refer to the ICD-9-CM manual

ICD-9 Procedure Codes

Refer to the ICD-9-CM manual

ICD-10 Diagnosis Codes

Refer to the ICD-10-CM manual

ICD-10 Procedure Codes

Refer to the ICD-10-CM manual


Medicare Coverage:

The information contained in this section is for informational purposes only. HCSC makes no representation as to the accuracy of this information. It is not to be used for claims adjudication for HCSC Plans.

The Centers for Medicare and Medicaid Services (CMS) does not have a national Medicare coverage position. Coverage may be subject to local carrier discretion.

A national coverage position for Medicare may have been developed since this medical policy document was written. See Medicare's National Coverage at <http://www.cms.hhs.gov.>

References:

1. Campbell RM, Jr., Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. Mar 2003; 85-A (3):399-408. PMID 12637423

2. Campbell RM, Jr. VEPTR: past experience and the future of VEPTR principles. Eur Spine J. Mar 2013; 22 Suppl 2:S106-117. PMID 23354777

3. U.S. Food and Drug Administration. Vertical Expandable Prosthetic Titanium Rib (VEPTR) - H030009. 2004; http://www.accessdata.fda.gov. Accessed March, 2015.

4. Campbell RM, Jr., Smith MD, Mayes TC, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. Aug 2004; 86-A (8):1659-1674. PMID 15292413

5. Flynn JM, Emans JB, Smith JT, et al. VEPTR to treat nonsyndromic congenital scoliosis: a multicenter, mid-term follow-up study. J Pediatr Orthop. Oct-Nov 2013; 33(7):679-684. PMID 23812154

6. Gadepalli SK, Hirschl RB, Tsai WC, et al. Vertical expandable prosthetic titanium rib device insertion: does it improve pulmonary function? J Pediatr Surg. Jan 2011; 46(1):77-80. PMID 21238644

7. Emans JB, Caubet JF, Ordonez CL, et al. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine (Phila Pa 1976). Sep 1 2005;30(17 Suppl):S58-68. PMID 16138067

8. Motoyama EK, Deeney VF, Fine GF, et al. Effects on lung function of multiple expansion thoracoplasty in children with thoracic insufficiency syndrome: a longitudinal study. Spine (Phila Pa 1976). Feb 1 2006;31(3):284-290. PMID 16449900

9. Waldhausen JH, Redding GJ, Song KM. Vertical expandable prosthetic titanium rib for thoracic insufficiency syndrome: a new method to treat an old problem. J Pediatr Surg. Jan 2007; 42(1):76-80. PMID 17208544

10. Skaggs DL, Sankar WN, Albrektson J, et al. Weight gain following vertical expandable prosthetic titanium ribs surgery in children with thoracic insufficiency syndrome. Spine (Phila Pa 1976). Nov 1 2009; 34(23):2530-2533. PMID 19927103

11. Mayer OH, Redding G. Early changes in pulmonary function after vertical expandable prosthetic titanium rib insertion in children with thoracic insufficiency syndrome. J Pediatr Orthop. Jan-Feb 2009; 29(1):35-38. PMID19098643

12. White KK, Song KM, Frost N, et al. VEPTR growing rods for early-onset neuromuscular scoliosis: feasible and effective. Clin Orthop Relat Res. May 2011;469(5):1335-1341. PMID 21213088

13. Farley FA, Li Y, Jong N, et al. Congenital scoliosis SRS-22 outcomes in children treated with observation, surgery, and VEPTR. Spine (Phila Pa 1976). Oct 15 2014; 39(22):1868-1874. PMID 25099323

14. Vertical Expandable Prosthetic Titanium Rib. Chicago Illinois: Blue Cross Blue Shield Association Medical Policy Reference Manual (2015 May) Surgery 7.01.110.

Policy History:

Date Reason
4/15/2017 Reviewed. No changes.
10/1/2016 Document updated with literature review. Coverage unchanged.
1/1/2015 Reviewed. No changes.
12/15/2013 Document updated with literature review. Coverage unchanged. CPT/HCPCS code(s) updated
1/1/2010 Revised/Updated Entire Document. No change in conditional coverage criteria. .
9/1/2007 Revised/Updated Entire Document
8/1/2005 New Medical Document

Archived Document(s):

Back to Top