Archived Policies - Medicine


Bioimpedance Devices for Detection of Lymphedema

Number:MED201.036

Effective Date:07-15-2010

End Date:07-31-2012

Coverage:

Devices using bioimpedance (bioelectrical impedance spectroscopy) are considered experimental, investigational and unproven for use in the diagnosis, surveillance, or treatment of patients with lymphedema, including use in subclinical secondary lymphedema.

Description:

Secondary lymphedema of the upper extremity may develop following surgical treatment for breast cancer; it has been reported in about 25 to 50% of women following mastectomy.  This can be a chronic disfiguring condition.  It results from lymphatic dysfunction or disruption, and can be difficult to accurately diagnose and manage.  One challenge is identifying the presence of clinically significant limb swelling through simple noninvasive methods.  Many techniques have been used for documenting lymphedema including differences in limb volume (volume displacement) and limb circumference measurements.  A number of newer techniques are being evaluated including bioimpedance with use of bioimpedance spectroscopy (BIS) analysis, which uses resistance to electrical current in comparing the composition of fluid compartments.  Bioelectrical impedance analysis measures the body’s response to an electrical current.  Current flows along the path of least resistance and thus follows tissues with the highest water content; this allows edema to be measured.

The detection of subclinical lymphedema, i.e., the early detection of lymphedema before clinical symptoms become apparent, is another area of study.  Detection of subclinical lymphedema (referred to as Stage 0 lymphedema) is problematic.  Subclinical disease may exist for months or years before overt edema is noted.  This approach generally involves comparison of pre-operative with post-operative measurements, since existing differences between upper extremities (like the effects of a dominant extremity) may obscure early, subtle differences due to initial accumulation of fluid.  Bioimpedance has been proposed as one diagnostic test for this condition.  Those who support the approach to diagnose subclinical disease believe that early treatment of subclinical lymphedema should result in less severe chronic disease.

One bioimpedance spectroscopy device is the ImpediMed LDex™ U400, cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process in 2007 and in 2008.  According to the FDA approval letter, the device is “to aid in the clinical assessment of unilateral lymphedema of the arm in women.  The device is not intended to diagnose or predict lymphedema of an extremity.”

Rationale:

Assessment of a diagnostic technology typically focuses on three parameters: 1) technical performance; 2) diagnostic performance (sensitivity, specificity, and positive and negative predictive value) in appropriate populations of patients; and 3) demonstration that the diagnostic information can be used to improve patient outcomes (clinical utility).

Technical performance of a device is typically assessed with two types of studies, those that compare test measurements with a gold standard, and those that compare results taken with the same device on different occasions (test-retest).  While there is no absolute gold standard for diagnosis of lymphedema, the de facto gold standards are limb volume and/or limb circumference.  These measurements have been judged to be both valid and reliable.

Diagnostic performance is evaluated by the ability of a test to accurately diagnose a clinical condition in comparison with the gold standard.  The sensitivity of a test is the ability to detect a disease when the condition is present (true positive), while specificity indicates the ability to detect patients who are suspected of disease but who do not have the condition (true negative).  Evaluation of diagnostic performance, therefore, requires independent assessment by the two methods in a population of patients who are suspected of disease but who do not all have the disease. 

Evidence related to improvement of clinical outcomes with use of this testing assesses the data linking use of a test to changes in health outcomes (clinical utility).  While in some cases, tests can be evaluated adequately using technical and diagnostic performance, when a test identifies a new or different group of patients with a disease; randomized trials are needed to demonstrate impact of the test on net health outcome.

Literature review

A literature search was conducted through May 2010 to identify relevant studies.  Most studies reported on secondary lymphedema of the upper extremity following surgery for breast cancer.

The generally accepted approach to the diagnosis of lymphedema uses measurement of volume displacement and/or limb circumference.  Most studies related to diagnosis involve these approaches.  In contrast, the literature regarding bioelectrical impedance analysis is limited.  In a study from Australia, Cornish and colleagues followed 102 patients after treatment for breast cancer.  Twenty patients developed lymphedema in the 24 months follow-up period of this study and in these 20 cases multi-frequency bioelectrical impedance analysis (MFBIA) predicted the onset of the condition up to 10 months before the condition was diagnosed clinically.  Estimates of the sensitivity and specificity were both approximately 100%.  At the time of detection by MFBIA, only one of the patients had a positive test result from the total limb volume determined from the circumferential measures.  In another study from Australia, Hayes and colleagues noted that the point prevalence of lymphedema varies according to the approach to diagnosis.  In this study, lymphedema status was assessed at three-monthly intervals between six- and 18-months post-surgery in a sample of Australian women with unilateral, invasive breast cancer, using three methods: bioimpedance spectroscopy (BIS), difference between sum of arm circumferences (SOAC) and self-report.  Depending on the method, point prevalence ranged between 8-28%, with one in five to two in five women experiencing lymphedema at some point in time.  In a US-based study, Warren evaluated 15 patients with upper or lower-extremity secondary lymphedema documented by lymphoscintigraphy along with seven healthy controls using bioimpedance spectroscopy analysis.  From this small study, the authors determined that bioimpedance spectroscopy can be used as a tool for documenting the presence of lymphedema.

The literature on treatment shows variability among studies regarding response to therapy for secondary lymphedema.  Some studies found that mild disease was more responsive to treatment, other studies did not.  Similarly, when duration of symptoms was reported, there was no clear relationship between duration of the edema and response to treatment.

A recent publication by Czerniec and colleagues reported on measurement of lymphedema in a small group of patients, 33 with lymphedema and 18 without.  This study was to determine the relationship between physical methods of measuring lymphedema and self-reported swelling.  Measurement techniques included self-report, bioimpedance spectroscopy, perometery, and the truncated cone method.  The authors noted that the physical measurement tools were highly reliable with high concordance (0.89 to 0.99).  In this study, self-report correlated moderately with physical measurements (0.65 to 0.71) and was moderately reliable.  The authors concluded that lymphedema assessment methods are concordant and reliable but not interchangeable.

In a study from Europe involving 55 women who had breast cancer and axillary node dissection, Boccardo and colleagues evaluated a preventive protocol for lymphedema.  The preventive group had volumetric (arm volume) measurements performed preoperatively and at 1, 3, 5, 12, and 24 months postoperatively.  The protocol for this group included principles to minimize lymphedema risk, lymphscintigraphy preoperatively and at six months postoperatively, and early management of the condition once identified.  Clinically significant lymphedema was an increase of at least 200 mL from the preoperative difference between the two arms.  Assessments at two years were completed for 89% of the 55 women who were randomly assigned to either preventive group or control.  Of the 49 women who were measured at two years, 10 (21%) were identified with secondary lymphedema with an incidence of 8% in preventive group women and 33% in controls.  The authors noted that these prophylactic strategies appear to reduce the development of secondary lymphedema and alter its progression.  This is a relatively small study and the various interventions used may have each played a role in the outcome for this study.

A study by Stout Gergich and colleagues is frequently cited as support for early detection and treatment of subclinical lymphedema.  In this study, lymphedema was identified in 43 of 196 women who participated in a prospective breast cancer morbidity trial.  Limb volume was measured preoperatively and at three-month intervals after surgery using perometry (another evolving technique).  If an increase of greater than 3% in upper limb volume developed compared with the preoperative volume, then a diagnosis of lymphedema was made and a compression garment intervention was prescribed for four weeks.  Statistical analysis was a repeated-measures analysis of variance by time and limb (p<0.001) comparing the lymphedema cohort with an age-matched control group.  In this study, the time to onset of lymphedema averaged 6.9 months postoperatively.  The mean (+/-standard deviation) affected limb volume increase was 83 mL (+/-119 mL) at lymphedema onset compared with baseline.  Of note, clinical lymphedema is generally felt to be apparent when 200 mL of fluid accumulates.  After the intervention, a statistically significant mean 48 mL (+/-103 mL) volume decrease was realized.  The mean duration of the intervention was 4.4 weeks.  Volume reduction was maintained at an average follow-up of 4.8 months after the intervention.  The authors concluded that a short trial of compression garments effectively treated subclinical lymphedema.  This study does not answer the key question; that is, whether or not net health outcome was improved by early intervention.  In addition, the role of novel diagnostic testing compared to the use of the de facto gold standard tests (limb volume or circumference) also needs to be evaluated.

Summary

There is little information about the technical and diagnostic performance of bioimpedance testing in the diagnosis (surveillance) for secondary lymphedema, for both clinically overt disease and subclinical disease.  In addition, there are no data from comparative clinical trials that demonstrate the impact of this test (bioelectrical impedance) on clinical outcomes (clinical utility).  The approach to subclinical lymphedema (diagnosis and treatment) appears to be under active investigation.  Thus, based on the current evidence, use of this testing in the diagnosis or management of patients with known or suspected lymphedema is considered investigational.

Contract:

Each benefit plan, summary plan description or contract defines which services are covered, which services are excluded, and which services are subject to dollar caps or other limitations, conditions or exclusions. Members and their providers have the responsibility for consulting the member's benefit plan, summary plan description or contract to determine if there are any exclusions or other benefit limitations applicable to this service or supply. If there is a discrepancy between a Medical Policy and a member's benefit plan, summary plan description or contract, the benefit plan, summary plan description or contract will govern.

Coding:

None


Medicare Coverage:

The information contained in this section is for informational purposes only.  HCSC makes no representation as to the accuracy of this information.  It is not to be used for claims adjudication for HCSC Plans.

The Centers for Medicare and Medicaid Services (CMS) does not have a national Medicare coverage position.  Coverage may be subject to local carrier discretion.

A national coverage position for Medicare may have been developed since this medical policy document was written.  See Medicare's National Coverage at <http://www.cms.hhs.gov>.

References:

Cornish BH, Chapman M, Hirst C et al. Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology 2001; 34(1):2-11.

Warren AG, Janz BA, Slavin SA et al. The use of bioimpedance analysis to evaluate lymphedema. Ann Plast Surg 2007; 58(5):541-3.

Hayes S, Janda M, Cornish B et al. Lymphedema secondary to breast cancer: how choice of measure influences diagnosis, prevalaence, and identifiable risk factors. Lymphology 2008; 41(1):18-28.

Stout Gergich NL, Pfalzer LA, McGarvey C et al. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer 2008; 112(12):2809-19.

Boccardo FM, Ansaldi F, Bellini C et al. Prospective evaluation of a prevention protocol for lymphedema following surgery for breast cancer. Lymphology 2009; 42(1):1-9.

FDA—510(k) Summary, Impedimed IMPSFB7 Body Composition Analyzer.  US Food and Drug Administration – Center for Devices and Radiologic Health (2006 April 4).  Available at <http://www.fda.gov> (accessed – 2009 February 9).

FDA— 510(k) Summary, Impedimed Imp XCAExtracellular Fluid Analysis.  Food and Drug Administration– Center for Devices and Radiologic Health (2007 March 30).  Available at <http://www.fda.gov> (accessed – 2010 March 24).

FDA— 510(k) Summary, Impedimed Impedimed L-Dex U400 BIS Extra Cellular Fluid Analysis.  Food and Drug Administration–Center for Devices and Radiologic Health (2008 October 3).  Available at <http://www.fda.gov> (accessed – 2010 March 24).

Czerniec SA, Ward LC, Refshauge KM et al. Assessment of breast cancer-related arm lymphedema-comparison of physical measurement methods and self-report.  Cancer Invest 2010; 28(1):54-62.

Policy History:

7/15/2010        New medical document.  Devices using bioimpedance (bioelectrical impedance spectroscopy) are considered experimental, investigational and unproven for use in the diagnosis, surveillance, or treatment of patients with lymphedema, including use in subclinical secondary lymphedema. (Coverage is unchanged.  This topic was previously addressed on MED202.018, Plethysmography.)

Archived Document(s):

Back to Top